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INTRODUCTION 
 
Calculus programmes are a crucial subject of university-level mathematics education. Additionally, they are a 
professional subject and prerequisite knowledge of future workplaces for engineering students. Integrals are a core 
concept of the calculus curricula and languages, and tools adopted by other fields, such as physics, engineering, 
economics and statistics. Mathematics education research communities have discussed extensively students’ learning 
and development of mathematical concepts. Topics that have been discussed include the concepts of process and object 
[1] and different representations [2]. Students’ ability to convert process-objects and representations in mathematical 
concepts require and involve flexible thinking for mathematical concepts. Regarding engineering education, numerous 
studies have highlighted that mathematics instruction for engineering students should comprise not only mathematics 
knowledge but also training in mathematical thinking [3]. The results showed that training in mathematical thinking is 
the most important objective of university mathematics education. Developing the mathematical literacy skills of 
engineering students during their studies as a type of mathematical literacy required by professionals is also crucial. In 
this study, this structure as the theoretical framework was adopted to investigate the representational flexibility of 
engineering students regarding the concept of definite integral. 
 
THEORETICAL FRAMEWORK 
 
Representation is an indispensable tool for presenting mathematical concepts, communicating and considering or 
thinking. Duval maintained that the process of mathematical thinking required not only the use of representation 
systems but also cognitive integration of representation systems [4]. Based on Duval’s analysis, learning and 
comprehending mathematics require relatively similar semiotic representations. Duval proposed the following two 
conversions of semiotic representations: treatments, which referred to the conversion of representations in the same 
representation system; and conversions, which referred to the conversion of representations of the same objects and 
concepts in different representation systems. Therefore, the significant aspect of the epistemology and understanding of 
a mathematical concept derives from employing signs of different representation systems to connect corresponding 
elements of objects. Considering Duval’s reasoning and wording, one can infer that the two crucial dimensions of 
representational versatility are treatments and conversions, or the ability to perform transformations seamlessly within 
and between representation systems, that is, so-called representational flexibility. 
 
The essence of the concept of integrals is that the process concept and object concept can be presented by connected but 
different formats. A number of studies have indicated that the representations used by students to solve an integral 
problem are related to the meanings they attribute to the concept of integrals. The graphical representation of definite 
integrals is typically used in calculations that involve areas under a curve, whereas numerical representations are used 
for Riemann’s cumulative addition problems. Solving integrals using common integration techniques demonstrates the 

Engineering students’ representational flexibility - the case of definite integral 
 

Chih-Hsien Huang 
 

Ming Chi University of Technology 
New Taipei City, Taiwan 

 

ABSTRACT: This study examined students’ representational flexibility and the learning of the integral concept. By 
applying the representational framework for examining mathematics education in universities as the research guide, the 
author analysed and interpreted students’ responses to interview questions. In this study, representational flexibility 
included the ability to work within a representation system, transfer seamlessly between the systems of specific 
concepts, engage in procedural and conceptual interaction with specific representations and the visual representations 
students use to resolve specific problems. The analysis of the interviews and results indicated that coordination between 
the process concept of the graphic representations and the visual ability of the integral problems is necessary for 
excellent representational flexibility regarding the concept of definite integrals. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

163

need for symbolic representations. Based on representations of mathematical objects and process-objects, the 
representational structure of the concept of definite integral is show in Table 1. Students’ definite integral concept is 
divided or placed into two dimensions, understanding and representation, and expressed in matrix format to depict the 
representational flexibility of students in various representation systems. 
 

Table 1: The representational flexibility structure of the definite integral concept. 
 

Levels Representations 
Symbolic Graphical Numerical 

Procedure Can compute integral values 
using integral formula  

Can only calculate areas using 
symbolic representations 

Cannot use numerical 
approximation to calculate area 

Process Understands the relationship 
between the integrand and upper 
and lower limits of integration  

Comprehends the relationship 
between the area above the X-
axis and the integral 

Can interpret the limiting process 
of an rectangular area sums 

Object Can interpret and comprehend 
that a definite integral is an 
accumulation function 

Can interpret and comprehend 
the relationship between the 
area and integral 

Can interpret and comprehend the 
limiting process of Riemann sums 

 
METHODOLOGY 
 
The 25 first-year engineering students who participated in this study were enrolled at a university of technology and had 
learned the basic rules of integration using primitives, as well as their relationship to the calculation of a number of 
areas under curves. The instruments used for data collection were a questionnaire containing problems and interviews. 
The questionnaire comprised seven problems in definite integral (Figure 1). These problems enabled the students’ 
performance regarding the coordination of registers and the level of process/object to be analysed. The results of the 
questionnaire necessitated further investigation into the versatile mathematics thinking of students. Thus, 25 task-based 
interviews were conducted. 
 

Task 1. If 

 

f (t)dt = 8.6
1

3∫ , use two strategies to 

evaluate the value of 

 

f (t −1)dt
2

4∫ . 

Task 2. Let f represent the rate at which the amount of 
water in Phoenix’s water tank changed (hundreds of 
gallons per hour) over a 12-h period from 6 am to 6 pm 
last Saturday (Assume that the tank was empty at 6 am 
(t = 0)). Use the graph of f  provided below to answer 
the following questions: 
a. How much water was in the tank at noon? 
b. What is the meaning of ? 
c. What is the value of g(9)? 

 

Task 3. Is it true or false that if , 
then  for all ? Justify your answer. 
 
Task 4. If 

 

f (x)dx =10
1

5∫ , use two strategies to evaluate the 

value of

 

( f (x) + 2)dx
1

5∫ . 

Task 5. Estimate the area of the shaded region. 

 
Task 6. The graph of f is sketched below. Given that 

∫
−

=
5

2 8
39)( dxxf , determine the value of α . 

 
Task 7. Use two strategies to calculate . 

 
Figure 1: The study questionnaire. 

 
To assess and interpret the representational flexibility of the definite integral concept of the engineering students in this 
study, the author constructed the representational flexibility structure of definite integrals, employed this structure to 
develop clear standards, and used the triad mechanism proposed by Piaget and Garcia to describe and, then, classify the 
thinking of the students into various levels [5]. The standards were related to the thinking process adopted and presented 
by the students when problem solving, as well as their potential to construct relationships among the various 
representations and properties, and the degree to which they integrated these relationships into their explanation of 
problem solving. This mechanism divides the representational flexibility of concepts into three stages. At the intra 
stage, one tends to focus on a single cognitive item, overlooking other actions, processes and objects of a similar nature. 
At the inter stage, one can perceive and confirm the relationships among various actions, processes and objects. At the 
trans stage, one can use the relationships identified in the previous stage to construct a consistent structure based on the 
relationships among various actions, processes and objects. 
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RESULTS 
 
Students’ Representational Flexibility at the Intra Stage 
 
The initial level of representational flexibility when coordinating the construction of developmental chains of 
process/object and representation is the intra stage. The author categorised nine students into this group. One of the 
representational flexibility characteristics shared by these students was that they could not recognise the relationship 
between the area and integral. These students could only process representations within a representation system, and the 
representations used were influenced by the representation format employed for problems. Additionally, they preferred 
solving problems using symbolic representations. Consider the following excerpt from the interview conducted with 
Porter, who has a collection of rules that enable him to integrate fundamental functions, such as the integrals in Tasks 4 
and 7. However, Porter could not solve the problems using graphical representations. In Task 3, he stated that the 
proposition was true and provided specific examples of functions as evidence without giving graphic representations, 
failing to provide suitable justifications. He provided a specific example that defined two functions +1 and 

, and calculated two integrals between 1 and 2 to obtain 10/3 for f and 7/3 for g. Subsequently, the interview 
progressed as shown below. 
 
R: Can you provide a geometric or numerical example? 
P: (Draws the two curves of +1 and ) Like this? 
R: Can you do this in graph form without an equation? 
P: How do I draw graphs without equations?  
 
Drawing graphs based on the two example functions provided, Porter was unable to think using graphical 
representations without algebraic formulae. Porter’s thinking pattern relied on symbolic but not graphical 
representation. A similar situation occurred for Task 5. Porter did not use numerical approximation to compute the area; 
instead, he assumed that the graphical function was a parabola (Figure 2). Subsequently, the interview progressed as 
shown below. 
 
R: What do you think of this problem? 
P: We have to calculate the enclosed area for the parabola, x=3, x=9, and  the X axis in this problem.  
R: Why is it a parabola? 
P: Because the graph looks like a parabola.  
R: Is it absolutely necessary to compute the area using the integral? 
P: Of course. The integral is used to calculate area.  
 

 
 

Figure 2: Porter’s problem-solving process for Task 5. 
 
To Porter, an integral was simply a tool for computing area. Another student, John, was also categorised into the intra 
stage. For Task 6, he calculated the linear equation that passed through the two points (-2,-2) and (1/2,8) as 4 x – y + 6 
= 0. Then, he calculated the area enclosed by linear lines , and did not solve the problem 
using the relationship between the area and integral. In Task 7, John defined the step function and, then, established two 
integrals (between [–3, 0] and between [0, 3]). When he was asked Why do you separate the area into these two 
integrals?, he answered I separate the area into two integrals because of absolute values; one integral represents the 
value to the left of 0, and the other represents the one to the right of 0. 
 
The students in the intra stage generally used a single representation, and symbolic representation was used to solve all 
types of problems. This indicates that students consider symbolic representation as a support tool. The high proportion 
of symbolic representations used in versatile thinking has attracted attention. Additionally, students in this group were 
inclined to rely on analytical thinking instead of visual thinking. They were incapable of visualising problems. 
Furthermore, they tend to be cognitively fixed on algorithms and procedures instead of recognising the advantages of 
visualising the tasks; this is a phenomenon that Eisenberg and Dreyfus described as a reluctance to visualise [6]. 
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Students’ Representational Flexibility at the Inter Stage 
 
The next level of representational flexibility of the concept of definite integral regarding the existence of cognitive links 
and awareness of these links is the inter stage. The author categorised 14 students into this group. These students 
understood the relationships between representation systems and could change or transfer the representations in some of 
the representation systems. However, these students had difficulty coordinating these relationships. The students in this 
group shared the following characteristics: for the numerical representation system, they approached the process 
concept level; for the graphical representation system, they had reached the process concept level; and for the symbolic 
representation systems, they had approached or achieved the process concept level. These students could perform 
treatments and conversions on the three representations for the procedure concept level. Helen was one of the students 
in this group. She could use correct symbolic representations to perform mathematical thinking and could manipulate 
the area using graphical representations according to the changes in integral symbols in Tasks 1, 4 and 7. Consider 
Task 1 for example, Helen assumed that , then . Consequently, 

. Figure 3 shows Helen’s graphical representation. 
 

 
 

Figure 3: Helen’s problem-solving process for Task 3. 
 
However, for Task 3, she said that the proposition was false and gave graphic representations (Figure 4) but failed to 
make suitable justifications. 
 
R: Can you explain what you think of this task? 
H: The area enclosed by f, x = a, x = b, and the x axis is greater than the area enclosed by g, but the function value of f 
is smaller than g.  
R: But the question involves the integral of f being greater than that of g.  
H: The integral value is the area; therefore, a greater integral means a greater area.  
R: Does this has any relevance to the area being above or below the x axis?  
H: It is irrelevant to the area being above or below the x axis. 
 

 
 

Figure 4: Helen’s problem-solving process for Task 3. 
 
Similar to Helen, although the students in this group could convert symbolic representations and graphical 
representations, they believed that the integral value was the same as the area. Although they understood the 
relationship between the area above the X axis and the integral, they did not understand the relationship between the 
area below the x axis and the integral. For example, Mary calculated that the sum of the areas of the two triangles and 
one trapezoidal in Task 6 (Figure 5) equalled an integral value of 39/8, and that ; however, she did not 
realise that the value of  was greater than -1 in the graph. 
 

 
Figure 5: Mary’s problem-solving process for Task 6. 
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In Task 5, Javi divided the region into sections based on the upper and lower limits and, then, calculated the area 
(Figure 6). He coordinated the given graphic representation with the algebraic representation he established. That the 
function did not have an algebraic expression did not prevent him solving the problem. However, his selections of the 
height of the rectangle were limited to the left and right endpoints and the midpoint.  
 
R: Tell me what you think of this problem. 
J: No curve equation is provided for this problem; therefore, I segmented the area into six rectangles. The sum of the 
areas of the six rectangles is an approximate value of the original area.    
R: Why did you segment the area into six rectangles? 
J: Because I had insufficient time. If I had, I would have segmented the area into 10, 12, or even more rectangles.  
R: What difference does it make to segment the area into six or 12 rectangles?  
J: The more rectangles I have, the more accurate my answer will be.  
R: Do you have other methods that can be used to determine the height of the rectangle aside from the function values 
of the left and right endpoints? 
J: The function value of the midpoint can also be used as the height of the rectangle.  
R: Anything else? 
J: No, that is all. 
 

 
 

Figure 6: Javi’s problem-solving process for Task 6. 
 
These students can perform representation treatments in separate representation systems and generalise, abstract or 
interiorise these procedures into processes. They can also perform representation conversions in some of the 
representation systems and interpret the significance of definite integral in various representation systems. Students in 
this group differ from those at the intra stage in that they have developed visual methods to see mathematical concepts 
and problems better. Although their visual thinking inclines toward local not global thinking, this restricted visualisation 
actually hinders their solving of the tasks. 
 
Students’ Representational Flexibility at the Trans Stage 
 
Two students were categorised into this group. These students could recognise the relationships in representation 
systems and convert representations between representation systems. The shared characteristics of these students were 
that their understanding of numerical, graphical, and symbolic representation systems approached the object concept 
level, and that they could perform treatments and conversions on the three representations at the procedure and process 
concept levels. In Tasks 1, 4, and 7, Keven used correct symbolic representations to perform mathematical thinking. He 
also manipulated the area using graphical representations according to the changes in integral symbols. Consider Task 4 
for example, Kevin actually employed three methods to solve the problem. The first method was the standard algorithm 

; the second method was the mean value theorem for integrals 
 ; and the third method was graphical 

representation (Figure 7). 
 

 
 

Figure 7: Kevin’s problem-solving process for Task 4. 
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Unlike students in the intra stage who can only apply symbolic representation thinking, Kevin could employ graphical 
representation as a thinking tool. Additionally, Kevin clearly understood that the area above the x axis was the integral 
value, and he understood the relationship between the area under the x axis and the integral. As demonstrated by his 
answer to Task 2, Kevin clearly understood the conversions of numerical, symbolic and graphical representations for 
the definite integral.  
 
R: How did you calculate the amount of water at noon?  
K: I calculated the area from six o’clock in the morning to noon.   
R: Why did you calculate the area?  
K: Because the Y axis represents the variability of the water inflow and the X axis represents the time elapsed. The 
product of the two is the volume of the water inflow, which is the area.  
R: Why did you subtract 225 from 675? 
K: Because 675 is the area above the X axis, which represents the amount of water that flows into the tank. Whereas 
225 is the area below the X axis, which represents the amount of water that flows out of the tank. Thus, 675 minus 225 
equals the amount of water in the tank at noon. 
 
The most significant difference between the two students in this group and students in the other groups was that the two 
students in this group had the ability to perform representation treatments in representation systems, and they could 
perform representation conversions among various representation systems. This ability may involve or be related to 
visualisation. For Kevin, visualisation is a powerful tool to explore mathematical problems and to ascribe meaning to 
the concept of definite integrals and the relationship between them. 
 
CONCLUSIONS 
 
In this study, the author recruited first-year engineering students at universities as the research participants to investigate 
versatile thinking in the concept of definite integrals, using versatile thinking as a theoretical structure. At the intra 
stage, students memorise or remember a number of integral methods but do not understand the relationship between the 
area and the definite integral. They can perform representation treatments for individual representation systems, but 
cannot generalise, abstract or interiorise these procedures into processes. The difficulty these students encounter is the 
procedural thinking of symbolic representation, not the visual thinking that combines graphical representation. 
 
For example, students at the intra stage require formulae and equations to calculate areas and perform mathematical 
thinking. The majority of these students were at the inter stage. They had learned the rules for computing definite 
integrals and had begun recognising various interrelationships. The challenge these students faced was that they tended 
toward process thinking and not object thinking and their visual thinking patterns inclined toward local thinking and 
were restricted to specific aspects of the integral concept. Only two students were at the trans stage. These students had 
learned the rules of calculating derivatives and could recognise interrelationships. They also had visualisation abilities 
and could coordinate various representations of mathematical schemas, the concept of limit and definite integrals.  
 
The data analysis results show that the main obstacles preventing students from freely shifting within the structure of 
versatile thinking for the concept of definite integrals were that they had not achieved the process concept for graphical 
representations of definite integrals, and that this ability involves visualising the abstracted relationships and non-figural 
information into visual representations and imagery. Based on the students’ thinking performance, one can conclude 
that visual thinking plays a key role in the development of students’ versatile thinking. Visualisation is important for 
versatile thinking because it promotes versatile thinking and encourages students to consider problems holistically 
before dividing them into parts. 
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